M2.A

M3.A

[1]

[1]

M4.(a) ANY 2 from

•	Slow moving neutrons o	r low (kinetic)	energy neutrons
---	------------------------	-----------------	-----------------

B1

Β1

2

- (They are in) thermal equilibrium with the moderator / Are in thermal equilibrium with other material (at a temperature of about 300 K)
- Have energies of order of 0.025 eV
- Have (range of) KE similar to that of a gas at 300 K or room temperature
- (b) (i) Use of $mgh = \frac{1}{2} mv^2$ by substitution or rearranges to make h the subject

PE for use of equation of motion (constant acceleration)

C1

0.086(1) (m) or 0.086(2) (m)

A1

2

(ii)	Correct equation for conservation of momentum $m_1u_1 (+ m_2u_2) = m_1v_1 + m_2v_2$ or states momentum before = momentum after or $p_{before} = p_{after}$	
		B1
	(Correct clear Manipulation =) $0.065 (+ 0) = -0.032$	5 +
	0.0975 or -0.065 (+ 0) = 0.0325 - 0.0975 must see signs Condone non-SI here: 65 (+0) = - 32.5 + 97.5	
		B1
	States initial kinetic energy = final kinetic energy or States kinetic energy is conserved	
	Allow equivalent on RHS where masses are summed in one KE term	
		B1
	(Correct clear Manipulation=) 0.04225 = 0.0105625 0.0316875	+
	Or equivalent workings with numl	oers seen
	and 0.04225 = 0.04225 / KE before = KE after	
		B1
(iii)	(Percentage / fraction remaining after 1 collision =) ½ 25% seen	<i>4</i> =
		C1
	% remaining = $100 \times \frac{1}{2} m(1.3^2 - 0.65^2) / \frac{1}{2} m1.3^2$ or hockey ball = 0.0317 and initial ke = 0.04225 or their KE hb / 0.04225 or their KEhb / their KET	
	75(%) range 75 to 76	
		A1

4

2

(iv) **Demonstrates:**

Slowing down / loss of KE of golf ball is like neutrons slowed down / Neutrons can lose KE by elastic collisions also		
	B1	
Differs: Collisions in a reactor are not always / rarely head-on or KE loss is variable or Collisions are not <u>always</u> elastic or Ratio of mass of neutron to mass of nucleus is usually		
much smaller in a reactor	B1	
(v) Water	2.	2
	B1	1 [13]
M5. (a) $m = 16 g = 0.016 kg$ $r = 0.008 m$		
Use of $V=4$ / 3 π $r^{_3}$ $$ to give $V=4$ / 3 π (0.008) _3		
= $2.1 \times 10 - 6 \text{ m}^3 \checkmark$ The first mark is for calculating the volume		1
Use of density = m / V to give density = 0.016 / 2.1 × 10 ⁻ ✓ The second mark is for substituting into the density equation using the correct units	n	1
Density = 7.4 × 10 ³ kg m ⁻³ \checkmark The final mark is for the answer.		1
(b) Use of $v^2 = u^2 + 2as$ to give $v^2 = 2$ (9.81) (1.27) \checkmark		

	v^2 = 25 (24.9) The first mark is for using the equation	1
	v = 5.0 (m s ⁻¹) ✓ The second for the final answer	1
(c)	Use of $v2 = u2 + 2as$ to give $0 = u^2 + 2$ (-9.81) (0.85) <i>The first mark is for using the equation</i>	1
	$u^2 = 17 (16.7)$ $u = 4.1 \text{ m s}^{-1} \checkmark$ The second for the final answer	1
(d)	Change in momentum = mv + mu = 0.016 × 5 + 0.016 × 4.1 ✓ The first mark is for using the equation	1
	= 0.15 (0.146) kg m s ⁴ ✓ The second for the final answer	1
(e)	Use of Force = change in momentum / time taken = $0.15 / 40 \times 10^{3}$	

1

	= 3.6 N ✓ The second for the final answer	1
(f)	Impact time can be increased if the plinth material is not stiff ✓ Alternative A softer plinth would decrease the change in momentum of the ball (or reduce the height of rebound) ✓	1
	Increased impact time would reduce the force of the impact. ✓ Smaller change in momentum would reduce the force of impact ✓	1 [13]
M6. A		[1]
M7. D		[1]
M8. C		[1]
M9. (a)	Max GPE of block = Mgh = 0.46 × 9.81 × 0.63 = 2.84 J \checkmark	

The first mark is for working out the GPE of the block

1

	Initial KE of block = $\frac{1}{2}$ Mv ² = 2.84 J	
	Initial speed of block v^2 = (2 × 2.84) / 0.46	
	v = 3.51 ms ⁻¹ ✓ The second mark is for working out the speed of the block initially	1
	momentum lost by pellet = momentum gained by block	
	= Mv = 0.46 × 3.51 = 1.61 kg m s ⁻¹ ✓ The third mark is for working out the momentum of the block (and therefore pellet)	1
	Speed of pellet = $1.58 / m = 1.58 / 8.8 \times 10^{-3} = 180 ms^{-1}$ (183) \checkmark The final mark is for the speed of the pellet	1
	At each step the mark is for the method rather than the calculated answer Allow one consequential error in the final answer	1
(b)	As pellet rebounds, change in momentum of pellet greater and therefore the change in momentum of the block is greater ✓ <i>Ignore any discussion of air resistance</i>	1
	Initial speed of block is greater \checkmark	1
	(Mass stays the same)	
	Initial KE of block greater 🗸	1
	Therefore height reached by steel block is greater than with wooden block \checkmark	1
(c)	Calculation of steel method will need to assume that collision is elastic so that change of momentum can be calculated \checkmark	1
	This is unlikely due to deformation of bullet, production of sound etc. \checkmark	1
	And therefore steel method unlikely to produce accurate results.	I