M1.D

M2.A

M3.A

M4.(a) ANY 2 from

- Slow moving neutrons or low (kinetic) energy neutrons
- (They are in) thermal equilibrium with the moderator / Are in thermal equilibrium with other material (at a temperature of about 300 K)
- Have energies of order of 0.025 eV
- Have (range of) KE similar to that of a gas at 300 K or room temperature
(b) (i) Use of $m g h=1 / 2 m v^{2}$ by substitution or rearranges to make h the subject
PE for use of equation of motion (constant acceleration)
$0.086(1)(\mathrm{m})$ or $0.086(2)(\mathrm{m})$
(ii) Correct equation for conservation of momentum
$m_{1} u_{1}\left(+m_{2} u_{2}\right)=m_{1} v_{1}+m_{2} v_{2}$
or states momentum before $=$ momentum after or
$p_{\text {before }}=p_{\text {after }}$
(Correct clear Manipulation =) $0.065(+0)=-0.0325+$ 0.0975
or $-0.065(+0)=0.0325-0.0975$ must see signs
Condone non-SI here:
$65(+0)=-32.5+97.5$

States initial kinetic energy = final kinetic energy or
States kinetic energy is conserved
Allow equivalent on RHS where masses are summed in one KE term
(Correct clear Manipulation=) $0.04225=0.0105625+$ 0.0316875

Or equivalent workings with numbers seen

$$
\text { and } 0.04225=0.04225 / \text { KE before }=K E \text { after }
$$

(iii) (Percentage / fraction remaining after 1 collision =) $1 / 4=$ 25% seen

OR

\% remaining $=100 \times 1 / 2 m\left(1.3^{2}-0.65^{2}\right) / 1 / 2 m 1.3^{2}$
or hockey ball $=0.0317$ and initial $\mathrm{ke}=0.04225$
or their $K E_{\text {nb }} / 0.04225$ or their $\mathrm{KE}_{\text {hb }} /$ their KE_{T}
75(\%) range 75 to 76
(iv) Demonstrates:

Slowing down / loss of KE of golf ball is like neutrons slowed down / Neutrons can lose KE by elastic collisions also

Differs:

Collisions in a reactor are not always / rarely head-on or
KE loss is variable
or
Collisions are not always elastic
or
Ratio of mass of neutron to mass of nucleus is usually much smaller in a reactor
(v) Water

B1
1
[13]

$$
\begin{gathered}
\text { M5.(a) } \quad \mathrm{m}=16 \mathrm{~g}=0.016 \mathrm{~kg} \\
\text { Use of } \mathrm{V}=4 / 3 \pi \mathrm{r}^{3} \quad \text { to give } \mathrm{V}=4 / 3 \pi(0.008)^{3} \\
=2.1 \times 10-6 \mathrm{~m}^{3} \checkmark \\
\\
\text { The first mark is for calculating the volume }
\end{gathered}
$$

$$
\text { Use of density }=\mathrm{m} / \mathrm{V} \quad \text { to give density }=0.016 / 2.1 \times 10^{-6} \mathrm{~J}
$$

The second mark is for substituting into the density equation using the correct units

Density $=7.4 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \checkmark$
The final mark is for the answer.
(b) Use of $v^{2}=u^{2}+2$ as \quad to give $v^{2}=2(9.81)(1.27)$

$$
v^{2}=25(24.9)
$$

The first mark is for using the equation

$$
\mathrm{v}=5.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark
$$

The second for the final answer
(c) Use of $\mathrm{v} 2=\mathrm{u} 2+2$ as to give $0=\mathrm{u}^{2}+2(-9.81)(0.85) \checkmark$

The first mark is for using the equation

$$
u^{2}=17(16.7)
$$

$\mathrm{u}=4.1 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
The second for the final answer
(d) Change in momentum $=\mathrm{mv}+\mathrm{mu}=0.016 \times 5+0.016 \times 4.1 \mathrm{~J}$

The first mark is for using the equation
$=0.15$ (0.146) $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
The second for the final answer
(e) Use of Force = change in momentum / time taken $=0.15 / 40 \times 10^{-3} \mathrm{~J}$

The first mark is for using the equation

$$
\begin{array}{r}
=3.6 \mathrm{~N} \checkmark \\
\\
\text { The second for the final answer }
\end{array}
$$

(f) Impact time can be increased if the plinth material is not stiff \checkmark Alternative
A softer plinth would decrease the change in momentum of the ball (or reduce the height of rebound)

Increased impact time would reduce the force of the impact.
Smaller change in momentum would reduce the force of impact

M8.C

M9.(a) Max GPE of block $=$ Mgh $=0.46 \times 9.81 \times 0.63=2.84 \mathrm{~J}$
The first mark is for working out the GPE of the block

Initial KE of block $=1 / 2 \mathrm{Mv}^{2}=2.84 \mathrm{~J}$
Initial speed of block $\mathrm{V}^{2}=(2 \times 2.84) / 0.46$
$\mathrm{v}=3.51 \mathrm{~ms}^{-1}$
The second mark is for working out the speed of the block initially

At each step the mark is for the method rather than the calculated answer
Allow one consequential error in the final answer
(b) As pellet rebounds, change in momentum of pellet greater and therefore the change in momentum of the block is greater \checkmark

Ignore any discussion of air resistance

Initial speed of block is greater \checkmark
(Mass stays the same)
Initial KE of block greater \checkmark

Therefore height reached by steel block is greater than with wooden block
(c) Calculation of steel method will need to assume that collision is elastic so that change of momentum can be calculated \checkmark

This is unlikely due to deformation of bullet, production of sound etc.

And therefore steel method unlikely to produce accurate results.

$$
\text { Page } 7
$$

